#page-content {max-width: 1920px !important;} References | COS-OCS | Maarten Krol

References

  • Ahlström, A. et al. (2015), The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink, Science, 348(6237), 895–899, doi:10.1126/science.aaa1668.
  • Asaf, D., E. Rotenberg, F. Tatarinov, U. Dicken, S. A. Montzka, and D. Yakir (2013), Ecosystem photosynthesis inferred from measurements of carbonyl sulphide flux, Nature Geosci, 6(3), 186–190, doi:10.1038/ngeo1730.
  • Aydin, M., J. E. Campbell, T. J. Fudge, K. M. Cuffey, M. R. Nicewonger, K. R. Verhulst, and E. S. Saltzman (2016), Changes in atmospheric carbonyl sulfide over the last 54,000 years inferred from measurements in Antarctic ice cores, Journal of Geophysical Research: Atmospheres, 121(4), 1943–1954, doi:10.1002/2015JD024235.
  • Aydin, M., M. B. Williams, C. Tatum, and E. S. Saltzman (2008), Carbonyl sulfide in air extracted from a South Pole ice core: a 2000 year record, Atmos Chem Phys, 8(24), 7533–7542, doi:10.5194/acp-8-7533-2008.
  • Barkley, M. P., P. I. Palmer, C. D. Boone, P. F. Bernath, and P. Suntharalingam (2008), Global distributions of carbonyl sulfide in the upper troposphere and stratosphere, Geophys Res Lett, 35(14), L14810, doi:10.1029/2008GL034270.
  • Basu, S., M. Krol, A. Butz, C. Clerbaux, Y. Sawa, T. Machida, H. Matsueda, C. Frankenberg, O. P. Hasekamp, and I. Aben (2014), The seasonal variation of the CO2 flux over Tropical Asia estimated from GOSAT, CONTRAIL, and IASI, Geophys Res Lett, 41(5), 1809–1815, doi:10.1002/2013GL059105.
  • Batenburg, A. M., T. J. Schuck, A. K. Baker, A. Zahn, C. A. M. Brenninkmeijer, and T. Röckmann (2012), The stable isotopic composition of molecular hydrogen in the tropopause region probed by the CARIBIC aircraft, Atmos Chem Phys, 12(10), 4633–4646, doi:10.5194/acp-12-4633-2012.
  • Beer, C. et al. (2010), Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate, Science, 329(5993), 834–838, doi:10.1126/science.1184984.
  • Bergamaschi, P. et al. (2010), Inverse modeling of European CH4 emissions 2001-2006, J Geophys Res, 115, D22309, doi:10.1029/2010JD014180.
  • Bergamaschi, P. et al. (2013), Atmospheric CH4 in the first decade of the 21st century: Inverse modeling analysis using SCIAMACHY satellite retrievals and NOAA surface measurements, J Geophys Res, 118(13), 7350–7369, doi:10.1002/jgrd.50480.
  • Berkelhammer, M., D. Asaf, C. Still, S. Montzka, D. Noone, M. Gupta, R. Provencal, H. Chen, and D. Yakir (2014), Constraining surface carbon fluxes using in situ measurements of carbonyl sulfide and carbon dioxide, Global Biogeochemical Cycles, 28(2), 161–179, doi:10.1002/2013GB004644.
  • Berry, J. et al. (2013), A coupled model of the global cycles of carbonyl sulfide and CO2: A possible new window on the carbon cycle, Journal of Geophysical Research: Biogeosciences, 118(2), 842–852, doi:10.1002/jgrg.20068.
  • Billesbach, D. P., J. A. Berry, U. Seibt, K. Maseyk, M. S. Torn, M. L. Fischer, M. Abu-Naser, and J. E. Campbell (2014), Growing season eddy covariance measurements of carbonyl sulfide and CO2 fluxes: COS and CO2 relationships in Southern Great Plains winter wheat, Agricultural and Forest Meteorology, 184, 48–55, doi:10.1016/j.agrformet.2013.06.007.
  • Blake, N. J. et al. (2004), Carbonyl sulfide and carbon disulfide: Large‐scale distributions over the western Pacific and emissions from Asia during TRACE‐P, Journal of Geophysical Research: Atmospheres (1984–2012), 109(D15), D15S05, doi:10.1029/2003JD004259.
  • Blake, N. J. et al. (2008), Carbonyl sulfide (OCS): Large‐scale distributions over North America during INTEX‐NA and relationship to CO2, Journal of Geophysical Research: Atmospheres (1984–2012), 113(D9), D09S90, doi:10.1029/2007JD009163.
  • Blonquist, J. M., S. A. Montzka, J. W. Munger, D. Yakir, A. R. Desai, D. Dragoni, T. J. Griffis, R. K. Monson, R. L. Scott, and D. R. Bowling (2011), The potential of carbonyl sulfide as a proxy for gross primary production at flux tower sites, Journal of Geophysical Research: Atmospheres (1984–2012), 116(G4), G04019, doi:10.1029/2011JG001723.
  • Bonan, G. B. (2008), Forests and Climate Change: Forcings, Feedbacks, and the Climate Benefits of Forests, Science, 320(5882), 1444–1449, doi:10.1126/science.1155121.
  • Boone, C. D., R. Nassar, K. A. Walker, Y. Rochon, S. D. McLeod, C. P. Rinsland, and P. F. Bernath (2005), Retrievals for the atmospheric chemistry experiment Fourier-transform spectrometer, Appl. Opt., 44(33), 7218–7231, doi:10.1364/AO.44.007218.
  • Bozhinova, D., M. K. V. D. Molen, I. R. V. D. Velde, M. C. Krol, S. V. D. Laan, H. A. J. Meijer, and W. Peters (2014), Simulating the integrated summertime Δ14CO2 signature from anthropogenic emissions over Western Europe, Atmos Chem Phys, 14(14), 7273–7290, doi:10.5194/acp-14-7273-2014.
  • Brühl, C., J. Lelieveld, H. Tost, M. Höpfner, and N. Glatthor (2015), Stratospheric sulfur and its implications for radiative forcing simulated by the chemistry climate model EMAC, J Geophys Res Atmos, 120(5), 2103–2118, doi:10.1002/2014JD022430.
  • Brühl, C., J. Lelieveld, P. J. Crutzen, and H. Tost (2012), The role of carbonyl sulphide as a source of stratospheric sulphate aerosol and its impact on climate, Atmos Chem Phys, 12(3), 1239–1253, doi:10.5194/acp-12-1239-2012.
  • Buzan, E. M., C. A. Beale, C. D. Boone, and P. F. Bernath (2016), Global stratospheric measurements of the isotopologues of methane from the Atmospheric Chemistry Experiment Fourier transform spectrometer, Atmos Meas Tech, 9(3), 1095–1111, doi:10.5194/amt-9-1095-2016.
  • Campbell, J. E. et al. (2008), Photosynthetic Control of Atmospheric Carbonyl Sulfide During the Growing Season, Science, 322(5904), 1085–1088, doi:10.1126/science.1164015.
  • Campbell, J. E., M. E. Whelan, U. Seibt, S. J. Smith, J. A. Berry, and T. W. Hilton (2015), Atmospheric carbonyl sulfide sources from anthropogenic activity: Implications for carbon cycle constraints, Geophys Res Lett, 0, 1–7, doi:10.1002/2015GL063445.
  • Castleman, A. W., H. R. Munkelwitz, and B. Manowitz (1974), Isotopic studies of the sulfur component of the stratospheric aerosol layer1,2, Tellus, 26(1‐2), 222–234, doi:10.1111/j.2153-3490.1974.tb01970.x.
  • Chin, M., and D. D. Davis (1995), A reanalysis of carbonyl sulfide as a source of stratospheric background sulfur aerosol, Journal of Geophysical Research: Atmospheres (1984–2012), 100(D5), 8993–9005, doi:10.1029/95JD00275.
  • Crutzen, P. J. (1976), The possible importance of CSO for the sulfate layer of the stratosphere, Geophys Res Lett, 3(2), 73–76, doi:10.1029/GL003i002p00073.
  • de Laat, A., AMS Gloudemans, H Schrijver, MMP van den Broek, JF Meirink, I Aben, and M. Krol (2006), Quantitative analysis of SCIAMACHY carbon monoxide total column measurements, Geophys Res Lett, (33,), L07807, doi:10.1029/2005GL025530.
  • Derendorp, L., R. Holzinger, A. Wishkerman, F. Keppler, and T. Rockmann (2011), Methyl chloride and C2–C5 hydrocarbon emissions from dry leaf litter and their dependence on temperature, Atmos Environ, 45(18), 3112–3119, doi:10.1016/j.atmosenv.2011.03.016.
  • Du, Q. et al. (2016), An important missing source of atmospheric carbonyl sulfide: Domestic coal combustion, Geophys Res Lett, doi:10.1002/2016GL070075.
  • Engel, A., and U. Schmidt (1994), Vertical Profile Measurements of Carbonylsulfide in the Stratosphere, Geophys Res Lett, 21(20), 2219–2222, doi:10.1029/94GL01461/pdf.
  • ESF, GHCP, GEO (2015), Extreme Geohazards: Reducing the Disaster Risk and Increasing Resilience.
  • Glatthor, N. et al. (2015), Tropical sources and sinks of carbonyl sulfide observed from space, Geophys Res Lett, 42(22), 10,082–10,090, doi:10.1002/2015GL066293.
  • Griffith, D. W. T., N. B. Jones, and W. A. Matthews (1998), Interhemispheric ratio and annual cycle of carbonyl sulfide (OCS) total column from ground‐based solar FTIR spectra, Journal of Geophysical Research: Atmospheres (1984–2012), 103(D7), 8447–8454, doi:10.1029/97JD03462.
  • Harrigan, D. L., H. E. Fuelberg, I. J. Simpson, D. R. Blake, G. R. Carmichael, and G. S. Diskin (2011), Anthropogenic emissions during Arctas-A: mean transport characteristics and regional case studies, Atmos Chem Phys, 11(16), 8677–8701, doi:10.5194/acp-11-8677-2011.
  • Hattori, S., A. Toyoda, S. Toyoda, S. Ishino, Y. Ueno, and N. Yoshida (2015), Determination of the Sulfur Isotope Ratio in Carbonyl Sulfide Using Gas Chromatography/Isotope Ratio Mass Spectrometry on Fragment Ions 32S +, 33S +, and 34S , Anal. Chem., 87(1), 477–484, doi:10.1021/ac502704d.
  • Hattori, S., J. A. Schmidt, D. W. Mahler, S. O. Danielache, M. S. Johnson, and N. Yoshida (2012), Isotope Effect in the Carbonyl Sulfide Reaction with O(3P), J Phys Chem A, 116(14), 3521–3526, doi:10.1021/jp2120884.
  • Hattori, S., S. O. Danielache, M. S. Johnson, J. A. Schmidt, H. G. Kjaergaard, S. Toyoda, Y. Ueno, and N. Yoshida (2011), Ultraviolet absorption cross sections of carbonyl sulfide isotopologues OC32S, OC33S, OC34S and O13CS: isotopic fractionation in photolysis and atmospheric implications, Atmos Chem Phys, 11(19), 10293–10303, doi:10.5194/acp-11-10293-2011.
  • Houweling, S. et al. (2014), ACP - Abstract - A multi-year methane inversion using SCIAMACHY, accounting for systematic errors using TCCON measurements, Atmos Chem Phys, 14, 4012, doi:10.5194/acp-14-3991-2014.
  • Houweling, S. et al. (2015), An intercomparison of inverse models for estimating sources and sinks of CO2 using GOSAT measurements, Journal of Geophysical Research: Atmospheres, 120(10), doi:10.1002/2014JD022962.
  • Höpfner, M., N. Glatthor, and U. Grabowski (2013), Sulfur dioxide (SO2) as observed by MIPAS/Envisat: temporal development and spatial distribution at 15–45 km altitude, Atm. Chem. Phys., 13, 10405–10423, doi:10.5194acp-13-10405-2013.
  • Inomata, Y., K. Matsunaga, Y. Murai, K. Osada, and Y. Iwasaka (1999), Simultaneous measurement of volatile sulfur compounds using ascorbic acid for oxidant removal and gas chromatography–flame photometric detection, Journal of Chromatography A, 864(1), 111–119, doi:10.1016/S0021-9673(99)00963-2.
  • Junge, J. E. (1966), The dynamics of tropospheric aerosols, Tellus, 18(2‐3), 685–685.
  • Kamezaki, K., S. Hattori, T. Ogawa, S. Toyoda, H. Kato, Y. Katayama, and N. Yoshida (2016), Sulfur Isotopic Fractionation of Carbonyl Sulfide during Degradation by Soil Bacteria, Environ. Sci. Technol., acs.est.5b05325–8, doi:10.1021/acs.est.5b05325.
  • Kettle, A. J., U. Kuhn, M. Von Hobe, J. Kesselmeier, and M. O. Andreae (2002), Global budget of atmospheric carbonyl sulfide: Temporal and spatial variations of the dominant sources and sinks, Journal of Geophysical Research: Atmospheres (1984–2012), 107(D22), ACH 25–1–ACH 25–16, doi:10.1029/2002JD002187.
  • Kooijmans, L. M. J., N. A. M. Uitslag, M. S. Zahniser, D. D. Nelson, S. A. Montzka, and H. Chen (2016), Continuous and high precision atmospheric concentration measurements of COS, CO2, CO and H2O using a quantum cascade laser spectrometer (QCLS), Atmospheric Measurement Techniques Discussions, in review, doi:10.5194/amt-2016-50.
  • Kremser, S. et al. (2016), Stratospheric aerosol—Observations, processes, and impact on climate, Reviews of Geophysics, 54(2), 278–335, doi:10.1002/2015RG000511.
  • Kremser, S., N. B. Jones, M. Palm, B. Lejeune, Y. Wang, D. Smale, and N. M. Deutscher (2015), Positive trends in Southern Hemisphere carbonyl sulfide, Geophys Res Lett, 42(21), 9473–9480, doi:10.1002/2015GL065879.
  • Krol, M. C., J. F. Meirink, P. Bergamaschi, J. E. Mak, D. Lowe, P. Jöckel, S. Houweling, and T. Röckmann (2008), What can 14CO measurements tell us about OH? Atmos Chem Phys, 8(16), 5033–5044.
  • Krol, M. C., P. B. Hooghiemstra, T. T. van Leeuwen, G. R. van der Werf, P. C. Novelli, M. N. Deeter, I. Aben, and T. Röckmann (2013a), Correction to “Interannual variability of carbon monoxide emission estimates over South America from 2006 to 2010,” J Geophys Res, 118(10), 5061–5064, doi:10.1002/jgrd.50389.
  • Krol, M. et al. (2013b), How much CO was emitted by the 2010 fires around Moscow? Atmos Chem Phys, 13(9), 4737–4747.
  • Krol, M., S. Houweling, B. Bregman, M. van den Broek, A. Segers, P. van Velthoven, W. Peters, F. Dentener, and P. Bergamaschi (2005), The two-way nested global chemistry-transport zoom model TM5: algorithm and applications, Atmos Chem Phys, 5, 417–432.
  • Krouze, H. R., and V. A. Grinenko (1991), Stable Isotopes: Natural and Anthropogenic Sulphur in the Environment, edited by H. R. Krouze and V. A. Grinenko, Wiley & Sons.
  • Krysztofiak, G., Y. Veng Té, V. Catoire, G. Berthet, G. C. Toon, F. Jégou, P. Jeseck, and C. Robert (2014), Carbonyl Sulphide (OCS) Variability with Latitude in the Atmosphere, Atmosphere-Ocean, 53(1), 1–13, doi:10.1080/07055900.2013.876609.
  • Kuai, L. et al. (2015), Estimate of carbonyl sulfide tropical oceanic surface fluxes using Aura Tropospheric Emission Spectrometer observations, Journal of Geophysical Research: Atmospheres, 120(20), 11,012–11,023, doi:10.1002/2015JD023493.
  • Kuai, L., J. Worden, S. S. Kulawik, S. A. Montzka, and J. Liu (2014), Characterization of Aura TES carbonyl sulfide retrievals over ocean, Atmospheric Measurement Techniques, 7(1), 163–172, doi:10.5194/amt-7-163-2014.
  • Laan Luijkx, I. T. et al. (2015), Response of the Amazon carbon balance to the 2010 drought derived with CarbonTracker South America, Global Biogeochemical Cycles, 29(7), 1092–1108, doi:10.1002/2014GB005082.
  • Launois, T., P. Peylin, S. Belviso, and B. Poulter (2015a), A new model of the global biogeochemical cycle of carbonyl sulfide – Part 2: Use of carbonyl sulfide to constrain gross primary productivity in current vegetation models, Atmos Chem Phys, 15(16), 9285–9312, doi:10.5194/acp-15-9285-2015.
  • Launois, T., S. Belviso, L. Bopp, C. G. Fichot, and P. Peylin (2015b), A new model for the global biogeochemical cycle of carbonyl sulfide – Part 1: Assessment of direct marine emissions with an oceanic general circulation and biogeochemistry model, Atmos Chem Phys, 15(5), 2295–2312, doi:10.5194/acp-15-2295-2015.
  • Leung, F. Y. T., A. J. Colussi, M. R. Hoffmann, and G. C. Toon (2002), Isotopic fractionation of carbonyl sulfide in the atmosphere: Implications for the source of background stratospheric sulfate aerosol, Geophys Res Lett, 29(10), 112–1–112–4, doi:10.1029/2001GL013955.
  • Lin, Y., M. S. Sim, and S. Ono (2011), Multiple-sulfur isotope effects during photolysis of carbonyl sulfide, Atmos Chem Phys, 11(19), 10283–10292, doi:10.5194/acp-11-10283-2011.
  • Maseyk, K., J. A. Berry, D. Billesbach, J. E. Campbell, M. S. Torn, M. Zahniser, and U. Seibt (2014), Sources and sinks of carbonyl sulfide in an agricultural field in the Southern Great Plains, P Natl Acad Sci Usa, 111(25), 9064–9069, doi:10.1073/pnas.1319132111.
  • Montzka, S. A., P. Calvert, B. D. Hall, J. W. Elkins, T. J. Conway, P. P. Tans, and C. Sweeney (2007), On the global distribution, seasonality, and budget of atmospheric carbonyl sulfide (COS) and some similarities to CO2, Journal of Geophysical Research: Atmospheres (1984–2012), 112(D9), D09302, doi:10.1029/2006JD007665.
  • Mrozek, D. J., C. V. D. Veen, M. E. G. Hofmann, H. Chen, R. Kivi, P. Heikkinen, and T. Rockmann (2016), Stratospheric Air Sub-sampler (SAS) and its application to analysis of Δ17O(CO2) from small air samples collected with an AirCore, Atmospheric Measurement Techniques Discussions, in review, doi:10.5194/amt-2016-124.
  • Notholt, J. et al. (2003), Enhanced upper tropical tropospheric COS: impact on the stratospheric aerosol layer, Science, 300(5617), 307–310, doi:10.1126/science.1080320.
  • Ogée, J., J. Sauze, J. Kesselmeier, B. Genty, H. Van Diest, T. Launois, and L. Wingate (2016), A new mechanistic framework to predict OCS fluxes from soils, Biogeosciences, 13(8), 2221–2240.
  • Pandey, S. et al. (2016), Inverse modeling of GOSAT-retrieved ratios of total column CH4 and CO2 for 2009 and 2010, Atmos Chem Phys, 16(8), 5043–5062, doi:10.5194/acp-16-5043-2016.
  • Pandey, S., S. Houweling, and M. Krol (2015), On the use of satellite derived CH4/CO2 columns in CH4 flux inversions, Atm. Chem. Phys., doi: 10.5194/acp-15-8615-2015.
  • Paul, D., H. Chen, H. A. Been, R. Kivi, and H. A. J. Meijer (2016), Radiocarbon analysis of stratospheric CO2 retrieved from AirCore sampling, Atmospheric Measurement Techniques Discussions, in review.
  • Peters, W. et al. (2010), Seven years of recent European net terrestrial carbon dioxide exchange constrained by atmospheric observations, Global Change Biology, 16 (4), 1317–1337, doi: 10.1111/j.1365-2486.2009.02078.x.
  • Peters, W. et al. (2007), An atmospheric perspective on North American carbon dioxide exchange: CarbonTracker, Proceedings of the National Academy of Sciences, 104(48), 18925–18930, doi:10.1073/pnas.0708986104.
  • Pieterse, G., M. C. Krol, A. M. Batenburg, L. P. Steele, P. B. Krummel, R. L. Langenfelds, and T. Röckmann (2011a,b), Global modelling of H-2 mixing ratios and isotopic compositions with the TM5 model, Atmos Chem Phys, 11(14), 7001–7026, doi:10.5194/acp-11-7001-2011.
  • Quéré, C. L. et al. (2015), Global Carbon Budget 2015, Earth System Science Data, 7(2), 349–396, doi:10.5194/essd-7-349-2015.
  • Rees, C. E. (1973), A steady-state model for sulphur isotope fractionation in bacterial reduction processes, Geochimica et Cosmochimica Acta, 37(5), 1141–1162, doi:10.1016/0016-7037(73)90052-5.
  • Reichstein, M. et al. (2005), On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm, Global Change Biology, 11(9), 1424–1439, doi:10.1111/j.1365-2486.2005.001002.x.
  • Reichstein, M. et al. (2013), Climate extremes and the carbon cycle, Nature, 500(7462), 287–295, doi:10.1038/nature12350.
  • Ridley, D. A. et al. (2014), Total volcanic stratospheric aerosol optical depths and implications for global climate change, Geophys Res Lett, 41(22), 7763–7769, doi:10.1002/2014GL061541.
  • Robock, A. (2000), Volcanic eruptions and climate, Reviews of Geophysics, 38(2), 191–219, doi:10.1029/1998RG000054.
  • Rubino, M. et al. (2016), Low atmospheric CO2 levels during the Little Ice Age due to cooling-induced terrestrial uptake, Nature Geosci, 1–7, doi:10.1038/ngeo2769.
  • Sandoval-Soto, L., M. Kesselmeier, V. Schmitt, A. Wild, and J. Kesselmeier (2012), Observations of the uptake of carbonyl sulfide (COS) by trees under elevated atmospheric carbon dioxide concentrations, Biogeosciences, 9(8), 2935–2945, doi:10.5194/bg-9-2935-2012.
  • Sandoval-Soto, L., M. Stanimirov, M. V. Hobe, V. Schmitt, J. Valdes, A. Wild, and J. Kesselmeier (2005), Global uptake of carbonyl sulfide (COS) by terrestrial vegetation: Estimates corrected by deposition velocities normalized to the uptake of carbon dioxide (CO2), Biogeosciences, 2(2), 125–132, doi:10.5194/bg-2-125-2005.
  • Santer, B. D. et al. (2014), Volcanic contribution to decadal changes in tropospheric temperature, Nature Geosci, 7(3), 185–189, doi:10.1038/ngeo2098.
  • Schmidt, J. A., M. S. Johnson, S. Hattori, N. Yoshida, S. Nanbu, and R. Schinke (2013), OCS photolytic isotope effects from first principles: sulfur and carbon isotopes, temperature dependence and implications for the stratosphere, Atmos Chem Phys, 13(3), 1511–1520, doi:10.5194/acp-13-1511-2013.
  • Schmidt, J. A., M. S. Johnson, Y. Jung, S. O. Danielache, S. Hattori, and N. Yoshida (2012), Predictions of the sulfur and carbon kinetic isotope effects in the OH+OCS reaction, Chemical Physics Letters, 531, 64–69, doi:10.1016/j.cplett.2012.02.049.
  • Seibt, U., J. Kesselmeier, L. Sandoval-Soto, U. Kuhn, and J. A. Berry (2010), A kinetic analysis of leaf uptake of COS and its relation to transpiration, photosynthesis and carbon isotope fractionation, Biogeosciences, 7(1), 333–341, doi:10.5194/bg-7-333-2010.
  • Shaheen, R., M. Abauanza, T. L. Jackson, J. McCabe, J. Savarino, and M. H. Thiemens (2013), Tales of volcanoes and El-Nino southern oscillations with the oxygen isotope anomaly of sulfate aerosol, P Natl Acad Sci Usa, 110(44), 17662–17667, doi:10.1073/pnas.1213149110.
  • Sheng, J. X., D. K. Weisenstein, B. P. Luo, E. Rozanov, A. Stenke, J. Anet, H. Bingemer, and T. Peter (2015), Global atmospheric sulfur budget under volcanically quiescent conditions: Aerosol‐chemistry‐climate model predictions and validation, J Geophys Res, doi:10.1002/2014JD021985.
  • Simpson, I. J., N. J. Blake, and B. Barletta (2010), Characterization of trace gases measured over Alberta oil sands mining operations: 76 speciated C 2–C 10 volatile organic compounds (VOCs), CO 2, CH 4, …, Atm. Chem. Phys.
  • Solomon, S., J. S. Daniel, R. R. Neely, J. P. Vernier, E. G. Dutton, and L. W. Thomason (2011), The persistently variable “background” stratospheric aerosol layer and global climate change, Science, 333(6044), 866–870, doi:10.1126/science.1206027.
  • Stimler, K., S. A. Montzka, J. A. Berry, Y. Rudich, and D. Yakir (2010), Relationships between carbonyl sulfide (COS) and CO2 during leaf gas exchange, New Phytol, 186(4), 869–878, doi:10.1111/j.1469-8137.2010.03218.x.
  • Sun, W., K. Maseyk, C. Lett, and U. Seibt (2015), A soil diffusion-reaction model for surface COS flux: COSSM v1, Geosci. Model Dev., 8, 3055–3070.
  • Sun, W., K. Maseyk, C. Lett, and U. Seibt (2016), Litter dominates surface fluxes of carbonyl sulfide in a Californian oak woodland, Journal of Geophysical Research: Biogeosciences, 121(2), 438–450, doi:10.1002/2015JG003149.
  • Suntharalingam, P., A. J. Kettle, S. M. Montzka, and D. J. Jacob (2008), Global 3‐D model analysis of the seasonal cycle of atmospheric carbonyl sulfide: Implications for terrestrial vegetation uptake, Geophys Res Lett, 35(19), L19801, doi:10.1029/2008GL034332.
  • Tarantola, A. (2005), Inverse Problem Theory, Society for Industrial and Applied Mathematics, Philidelphia.
  • van der Velde, I. R., J. B. Miller, K. Schaefer, G. R. van der Werf, M. C. Krol, and W. Peters (2014), Towards multi-tracer data-assimilation: biomass burning and carbon isotope exchange in SiBCASA, Biogeosciences.
  • van der Velde, I. R., J. B. Miller, K. Schaefer, S. Denning, M. Krol, and W. Peters (2013), New developments in SiBCASA: terrestrial 13 C exchange and biomass burning, Biogeosciences.
  • Velazco, V. A., G. C. Toon, J. F. L. Blavier, A. Kleinböhl, G. L. Manney, W. H. Daffer, P. F. Bernath, K. A. Walker, and C. Boone (2011), Validation of the Atmospheric Chemistry Experiment by noncoincident MkIV balloon profiles, Journal of Geophysical Research: Atmospheres (1984–2012), 116(D6), D06306, doi:10.1029/2010JD014928.
  • Vigano, I., T. Röckmann, R. Holzinger, A. Van Dijk, F. Keppler, M. Greule, W. A. Brand, H. Geilmann, and H. van Weelden (2009), The stable isotope signature of methane emitted from plant material under UV irradiation, Atmos Environ, 43(35), 5637–5646, doi:10.1016/j.atmosenv.2009.07.046.
  • Wang, Y. et al. (2016), Towards understanding the variability in biospheric CO2 fluxes: using FTIR spectrometry and a chemical transport model to investigate the sources and sinks of carbonyl sulfide and its link to CO2, Atmos Chem Phys, 16(4), 2123–2138.
  • Whelan, M. E., and R. C. Rhew (2015), Carbonyl sulfide produced by abiotic thermal and photodegradation of soil organic matter from wheat field substrate, Journal of Geophysical Research: Biogeosciences, 120(1), 54–62, doi:10.1002/2014JG002661.
  • Whelan, M. E., T. W. Hilton, J. A. Berry, M. Berkelhammer, A. R. Desai, and J. E. Campbell (2016), Carbonyl sulfide exchange in soils for better estimates of ecosystem carbon uptake, Atmos Chem Phys, 16(6), 3711–3726, doi:10.5194/acp-16-3711-2016.
  • Wofsy, S. C. (2011), HIAPER Pole-to-Pole Observations (HIPPO): fine-grained, global-scale measurements of climatically important atmospheric gases and aerosols, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 369(1943), 2073–2086, doi:10.1098/rsta.2010.0313.
  • Wohlfahrt, G., F. Brilli, L. Hörtnagl, X. Xu, H. Bingemer, A. Hansel, and F. Loreto (2012), Carbonyl sulfide (COS) as a tracer for canopy photosynthesis, transpiration and stomatal conductance: potential and limitations, Plant Cell Environ., 35(4), 657–667, doi:10.1111/j.1365-3040.2011.02451.x.
  • Xia, L., Robock, A., Tilmes, S. & Neely, R. R., III (2016), Stratospheric sulfate geoengineering could enhance the terrestrial photosynthesis rate. Atmos Chem Phys 16, 1479–1489.
© Maarten Krol 2022; This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme under grant agreement No 742798