

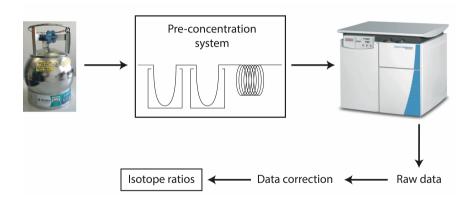
Measuring isotopologues of carbonyl sulfide

COS modelling meeting, Rotterdam, January 27th 2020

Sophie Baartman¹, Elena Popa¹, Maarten Krol^{1,2}, Karina Adcock¹, Johannes Laube⁴, Thomas Röckmann¹

¹Utrecht University, ²Wageningen University and Research, ³University of East Anglia, ⁴Forschungszentrum Jülich

COS isotopologues

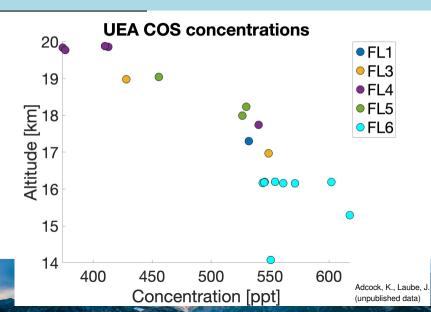

- Can help understand the budget by:
 - · Characterizing sources
 - Understanding processes
- S isotopes from COS

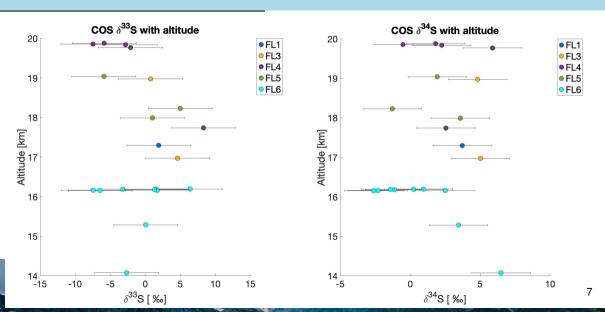
³² S	³³ S	³⁴ S	³⁶ S
95.02%	0.75%	4.21%	0.02%

$$CO^{32}S + h\nu \xrightarrow{faster} CO + S$$

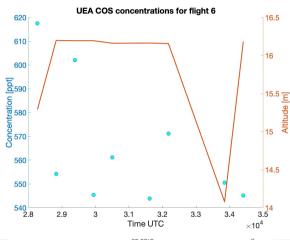
 $CO^{34}S + h\nu \xrightarrow{slower} CO + S$

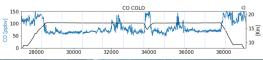
Measuring COS isotopes

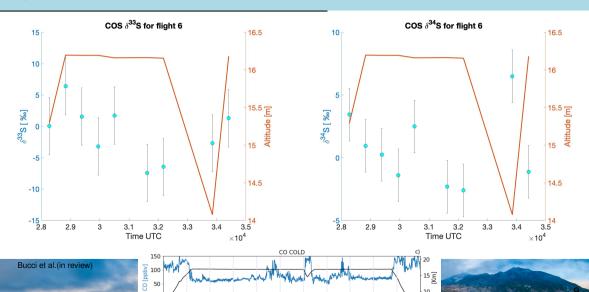

Pre-concentration system


System status

- COS trapping efficiency: 100%
- Tested influence of materials, dryer and pump
- ullet Trying to increase signal o increase precision
- Set up system for measuring from outside the building
- Calibration to international standard still needed


First results StratoClim


First results StratoClim


Flight 6 StratoClim

Flight 6 StratoClim

HEMERA 2020

- Balloon sampling in Kiruna, Sweden
- August or September 2020
- Sampling up to 35 km
- Strong signal expected

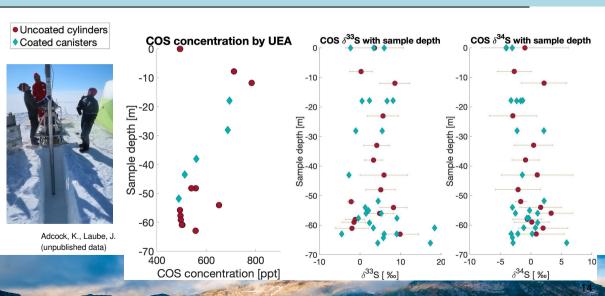
Future plans

- Increase precision
- Calibration
- Set up method for C and O isotopes from COS
- Measure samples
 - Stratosphere: StratoClim, NASA ATom, HEMERA
 - Diurnal and seasonal cycles: outside air from Utrecht (already in progress)

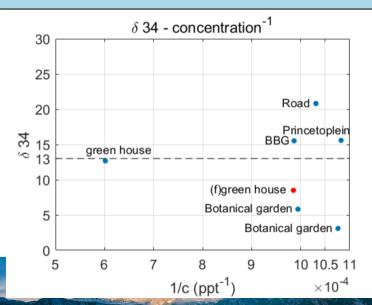
Summary

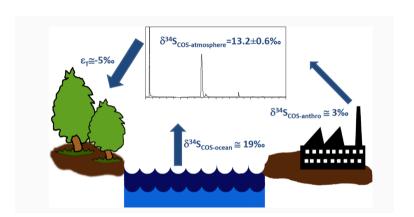
- Developed system for measuring S isotopes from COS
- Small sample measurements possible: from 3 L
- Can measure outside air continuously
- Increase in signal and precision needed

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme under grant agreement No 742798


$$^{34}R = \frac{^{34}S}{^{32}S} \tag{1}$$

$$\delta = \frac{R_{sample} - R_{standard}}{R_{standard}} * 1000\%$$
 (2)


Positive $\delta \to \text{enriched}$ in heavy isotope Negative $\delta \to \text{depleted}$ in heavy isotope



Results: EGRIP 2018 firn

Student project results

