

Measuring isotopes of carbonyl sulfide BBOS 2019

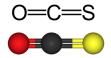
Sophie Baartman¹, Elena Popa¹, Maarten Krol^{1,2}, Thomas Röckmann¹

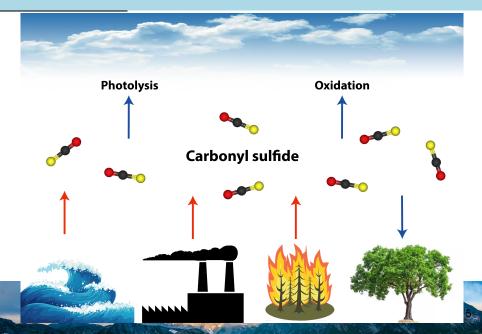
¹Utrecht University, ²Wageningen University and Research

Climate change

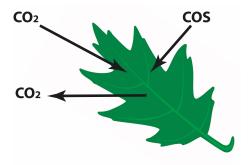
- Limit and mitigate climate change \rightarrow model predictions
- Uncertainties in climate modelling
 - Carbon sink biosphere and soil
 - Stratospheric chemistry \rightarrow aerosol formation
- How to best quantify photosynthesis?
- What is the main source of stratospheric sulfur aerosols (SSA)?

- Limit and mitigate climate change \rightarrow model predictions
- Uncertainties in climate modelling
 - Carbon sink biosphere and soil
 - Stratospheric chemistry \rightarrow aerosol formation
- How to best quantify photosynthesis?
- What is the main source of stratospheric sulfur aerosols (SSA)?


We can use carbonyl sulfide!

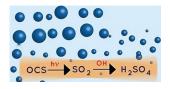

Carbonyl sulfide (COS or OCS)

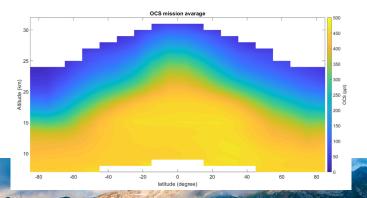
- Most abundant sulfur containing trace gas
- 500 parts per trillion (ppt)
- Lifetime of about 2 years
- Travels into the stratosphere

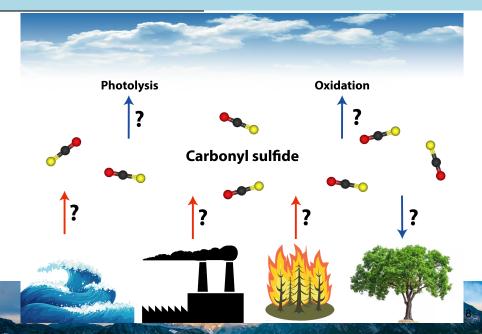


Carbonyl sulfide cycle

COS in the biosphere


- Biosphere CO₂ exchange: uptake and respiration
- COS uptake: one-way reaction
- COS uptake related to CO₂
 uptake
- Use COS as a tracer for photosynthesis




COS in the stratosphere

- COS broken down by oxidation and photolysis
- Largest contributor to stratospheric sulfur aerosols

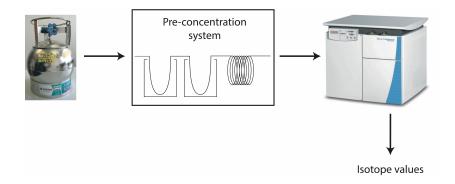
Carbonyl sulfide cycle

- **Isotopes**: "atoms that have the same number of protons and electrons but different number of neutrons and therefore have different physical properties"
- Sulfur: mass 32, 33, 34 and 36
- Can help close the budget by:
 - Characterizing sources
 - Understanding chemical processes

$$\begin{array}{c} \text{CO}^{32}\text{S} + \text{h}\nu \xrightarrow{\text{faster}} \text{CO} + \text{S} \\ \text{CO}^{34}\text{S} + \text{h}\nu \xrightarrow{\text{slower}} \text{CO} + \text{S} \end{array}$$

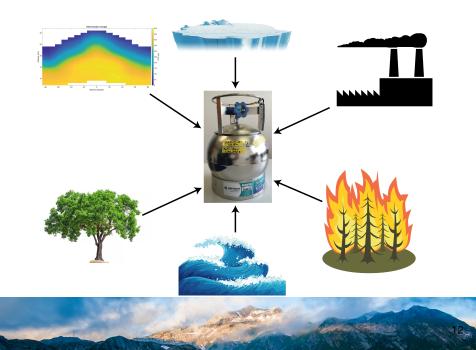
δ notation

$$^{34}R = \frac{^{34}S}{^{32}S}$$
 (1)


(2)

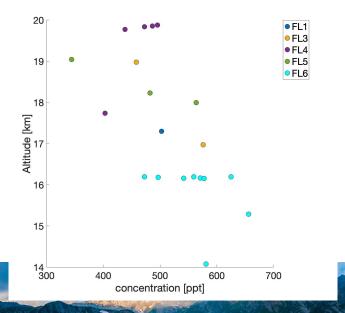
$$\delta = rac{R_{sample} - R_{standard}}{R_{standard}} * 1000\%$$

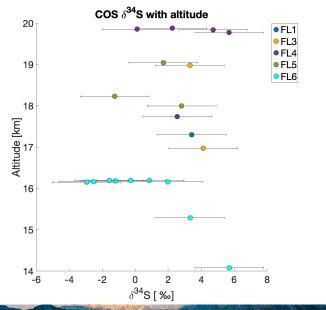
Positive $\delta \rightarrow$ enriched in heavy isotope Negative $\delta \rightarrow$ depleted in heavy isotope



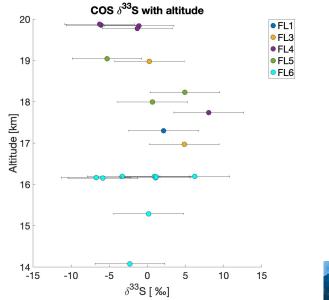
Measuring COS isotopes

Low concentration \rightarrow Very challenging!!



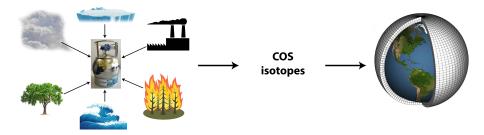

- Campaign with high altitude research aircraft
- Kathmandu
- Samples between 10 and 20 km
- COS isotopes in stratosphere never measured before

First results StratoClim



First results StratoClim

First results StratoClim


More stratospheric samples

- HEMERA2020: balloon sampling in Sweden
- August or September 2020
- Up to 35 40 km!
- High latitude

Combining the data


- COS-OCS project:
 - Measurements
 - Modelling
 - Satellite observations

constrain COS and CO₂ budgets

Questions?

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme under grant agreement No 742798

