

Utrecht University

UNIVERSITY & RESEARCH

100 years

Inverse modelling of the global Carbonyl Sulfide (COS) budget

Jin Ma¹, Maarten Krol^{1,2}, Linda Kooijmans²

1. Institute for Marine and Atmospheric Research, Utrecht University

2. Meteorology and Air Quality, Wageningen University & Research

COS modelling meeting, Rotterdam, Jan 2020

Acknowledgements to: NOAA flask and aircraft network, HIPPO aircraft data, TES Aura, MIPAS and ACE-FTS satellite product

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program under grant agreement No 742798

Objectives

- Implementation of inversion system of COS-CS₂-DMS
- Missing emissions in COS budgets: inversion based on unknown category
- Model validation with HIPPO and NOAA airborne profiles

COS, CS₂ and DMS in the atmosphere

COS lifetime : ~2 years CS₂ lifetime : ~15 days DMS lifetime : ~1.2 days

CS₂ and DMS can be oxidized quickly to contribute to COS formation in the atmosphere.

Model implementation within TM5-4DVAR

- 1. Emission implementation
- 2. Chemistry: troposphere OH and stratosphere removal
- 3. Data use: NOAA, HIPPO and satellite data
- 4. Inversion setup: correlation settings, and model validation

Observations: NOAA, HIPPO and airborne data

Global COS budgets: Berry2013

COS Global Budget (GgS/yr)	Berry2013	Prior of this study
Direct COS flux from oceans	39	40
Indirect COS flux as CS2 from oceans	81	81
Indirect COS flux as DMS from oceans	156	156
Direct anthropogenic flux	64	155
Indirect anthropogenic flux from CS2	116	188
Indirect anthropogenic flux from DMS	1	6
Biomass burning	136	136
Additional ocean flux	600	-
Anoxic soils and wetlands	-	-
Sources	1193	762
Destruction by OH	-101	-101
Destruction by O	-	-
Destruction by photolysis	-	-40
Uptake by plants	-738	1050
Uptake by soil	-355	-1053
Sinks	-1194	-1194
Net total	-2	-432

- Major updates on anthropogenic, SiB4 biosphere, and biomass emissions, and COS photolysis
- Net total prior is –432 GgS/yr, so add 432 GgS/yr uniformly as unknown emission
- Recent update of biosphere from Sib4 up to -1053 GgS/yr

Updates on COS&CS₂ anthropogenic emissions

 Split total COS anthropogenic emissions to COS and CS₂ direct emissions

(Zumkehr et. al, 2018)

Updates on COS biomass emissions

- Updated Emission factors for GFED 4.1 inventory
- Biofuel update in South Asia for CEDS inventory

(Andreae 2019, Fernandes et.al, 2007)

Error settings in inversions at NOAA stations

Unknown emission with different correlation settings

Totally different pattern

Spatial and temporal correlation test

Optimized unknown emission: seasonal cycle

1: missing sources or less sinks in tropics

2: more sinks or less sources in high latitudes in North Hemisphere

3: July shows strong seasonal signal of unknown emissions

13 years emission trend: prior and optimized unknown

- $y_{emiss}(t) = y_{trend}(t) + y_{season}(t) +$ $y_{noise}(t)$
- season = 365 days
- Trend of COS unknown Posterior is the result of balancing global budget

Hippo validation vs HIPPO-optimized

Anyway, HIPPO is not recommended to optimize emission fluxes due to short time range and limited spatial coverage.

NOAA airborne profile validation

Location of NOAA airborne observations

NOAA airborne profile validation

Profiles are averaged every 500 meters vertically.

NOAA airborne profile validation

Profiles are averaged every 500 meters vertically.

Conclusions

- Missing emissions from tropical regions, and more sinks in high latitude in Northern Hemisphere
- NOAA surface observations partially constrain emissions but we need more constraints in free troposphere
- Assimilating HIPPO improves fitting with independent data
- Future plan to assimilate satellite data

Thank you for your attention!

• Questions?

Main sink: COS uptake by a leaf

(Berry et. al 2013)

- CO₂ is taken up by a leaf via photosynthesis and emitted via respiration
- COS is only taken up by a leaf