INTRODUCING A MECHANISTIC MODELLING OF COS FLUXES IN THE ORCHIDEE LAND SURFACE MODEL

LSCE Team: F. Maignan, C. Abadie, M. Rémaud, S. Belviso, N. Vuichard, N. Raoult & P. Peylin

In collaboration with:

L.M.J. Kooijmans, K.-M. Kohonen (Hyytiala observations)

R. Commane, N. Wehr (Harvard observations)

J. Ogée (soil modelling)

OBJECTIVES

<u>Goal:</u>

Improve the representation of the Gross Primary Production (GPP).

- -> Use COS as a proxy to constrain GPP.
- -> Need of a COS model for continental vegetation and soil fluxes.

This study:

Vegetation uptake

- Implement a mechanistic model for COS uptake.
- Study the model's behavior in terms of fluxes and conductances at site level.
- Compare to the former Leaf Relative Uptake (LRU) approach.

Soil fluxes

- Preliminary test of Berry and Ogée models.

VEGETATION UPTAKE

Plant Functional Types

grid cells

Photosynthesis module

- Farquhar et al. (1980) for C3 plants
- Collatz at al. (1991) for C4 plants
- Ball et al. (1987) for stomatal conductance
- Kattge & Knorr (2007) for temperature dependences
- Yin & Struik (2009) for improvements and analytical resolution

Fig. 4. Micrograph of the abaxial surface of a typical leaf, illustrating the pathway of CO₂ transfer from ambient air (C_a) through leaf surface (C_s) and intercellular air spaces (C_i) to the Rubisco carboxylation-sites in chloroplasts (C_c). Boundary-layer conductance (g_b), stomatal conductance (g_s), and mesophyll conductance (g_m) are indicated. Revised from Flexas et al. [39].

Yin & Struik (2009)

VEGETATION UPTAKE OF COS: THE BERRY ET AL. (2013) MODEL

$$g_i = \alpha V_{cmax}$$

Figure 2. Resistance analog model of CO₂ and COS uptake. Numbers in parentheses are conductance values $(\text{mol m}^{-2} \text{ s}^{-1})$ corresponding to the numbered key: (1) Boundary layer conductance, g_b . (2) Stomatal conductance, g_s . (3) Mesophyll conductance, g_i . (4) Biochemical rate constant used approximate photosynthetic CO₂ uptake by Rubisco or the reaction of COS with carbonic anhydrase as a linear function of c_c. In this case, COS uptake is 12.6 pmol m⁻² s⁻¹ and that of CO₂ is 5.6 µmol m⁻² s⁻¹.

Berry et al. (2013)

+ Implementation of night-time conductances

RESULTS: DIEL AND SEASONAL CYCLES OF COS FLUXES

Harvard Forest site *in situ* data from Wehr et al. (2017)

RESULTS: CONDUCTANCES AT SITES - MEAN DAILY CYCLE

RESULTS: CONDUCTANCES AT SITES - DRIVERS

Hyytiala 2014

 $R^{2}(g_{s}, PAR) = 82\%$

RESULTS: COS VEGETATION FLUXES - LRU

Fig. 2. Responses of F_{COS} , F_{CO2} , and LRU to light and of F_{COS} to $g_{s,COS}$. Average F_{COS} , F_{CO2} (A and B) and LRU (C and D) versus PAR, and F_{COS} versus $g_{s,COS}$ (E and F) from 18 May to 13 July for chambers 1 (*Left*) and 2 (*Right*). Data are plotted as the median of 15 equal-sized bins in the x range. The error bars represent the 25th and 75th percentiles of data in each bin. For the correlation of F_{COS} with $g_{s,COS}$ (E and F) the different colors represent different light conditions: nighttime (blue); daytime with low light conditions (PAR < 150 and 100 μ mol m⁻²·s⁻¹ for chambers 1 and 2, respectively; green); daytime with high light conditions (PAR > 300 μ mol m⁻²·s⁻¹; orange). A transition phase between low and high PAR values is neglected. The coefficient of determination (R²), slope (sl), significance level (P), and number of data (n) are given for a linear regression through the median values (*E* and *F*).

Kooijmans et al. (2019)

RESULTS: COS FLUXES - GLOBAL SCALE

	Kettle et al., 2002	Montzka et al., 2007	Suntharal ingam et al., 2008	Berry et al., 2013	Launois et al., 2015			Thio
					ORC	LPJ	CLM4	study
Uptake by plants	-238	-730 to - 1500	-490	-738	-1335	-1069	-930	-747

LRU DISTRIBUTION OVER SPACE AND TIME

LRU (bin=0.1)

LRU (bin=0.1)

-> Distribution for each PFT

SPATIAL DISCREPANCY INTRODUCED BY THE LRU APPROACH

<u>Methodology:</u> COS_LRU is computed from GPP and LRU median values.

Mechanistic model minus LRU-equivalent model

TEMPORAL DISCREPANCY INTRODUCED BY THE LRU APPROACH

80

2 4

8 10 12

6 month 8 2

2 4 6 8

month

10 12

 \rightarrow If data assimilation: Wrong values of the optimized parameters

SOIL FLUXES

COS SOIL FLUXES: THE BERRY ET AL. (2013) MODEL

COS soil uptake is proportional to soil heterotrophic respiration R_h :

$$F_{COS, soil} = -k_{soil} * f(\theta) * R_h$$
 Berry et al. (2013)

Moisture limitation function $f(\theta)$:

COS soil production is not represented in this model.

COS SOIL FLUXES: THE OGÉE ET AL. (2016) MODEL

Mechanistic approach based on the mass balance equation:

$$\frac{\partial \varepsilon_{tot} C}{\partial t} = -\frac{\partial F_{diff}}{\partial z} + P - U \quad \text{Ogée et al. (2016)}$$

Mechanisms:

- COS diffusion (F_{diff}) through the soil matrix in the gaseous and liquid phases
- COS biotic and abiotic production (*P*)
- COS uptake (U) by soil microorganism hydrolysis and uncatalyzed hydrolysis

COS soil fluxes function of:

- Soil temperature
- Soil pressure
- Soil pH
- Soil water content

- Soil porosity
- Soil redox potential
- Carbonic anhydrase soil concentration

Harvard Forest site in situ data from Wehr et al. (2017)

Ogée model 3 → CA enhancement factor depends on biomes (values from Meredith et al., 2019)

Model	Hypothesis
Berry et al., 2013	- Soil optimum water content is constant $ heta_{opt}$ = 15%
Ogée et al., 2016 version 1	 CA enhancement factor is constant fCA = 30 000 Soil redox potential is constant
Ogée et al., 2016 version 2	 CA enhancement factor is constant at its median value fCA = 66 000 Soil redox potential is constant
Ogée et al., 2016 version 3	 CA enhancement factor depends on biomes (Meredith et al., 2019) Soil redox potential is constant

SPATIAL DISCREPANCY BETWEEN COS SOIL MODELS

TEMPORAL DISCREPANCY BETWEEN COS SOIL MODELS

• COS soil flux for each biome in the Northern hemisphere

TEMPORAL DISCREPANCY BETWEEN COS SOIL MODELS

• COS soil flux for each biome in the Southern hemisphere

Vegetation

Be careful with the LRU approach. A mechanistic model is preferable.

Soil

Improve the implementation thanks to collaborations J.Ogée, I. Baker, M. Whelan & E. Campbell.

Next steps Collect more COS fluxes data. Start optimization of mechanistic models' parameters. Co-assimilation of COS and SIF data.

VEGETATION UPTAKE OF COS: THE LEAF RELATIVE UPTAKE (LRU) APPROACH

$$LRU_{PFT} = \frac{F_{COS}}{GPP} \frac{[CO2]}{[COS]}$$

9296

T. Launois et al.: A new model of the global biogeochemical cycle of carbonyl sulfide

Figure 5. Smoothed seasonal cycles of OCS (left column) and CO₂ (right column) monthly mean mixing ratios, simulated at ALT, MLO and SPO, and obtained after removing the annual trends. Simulations obtained with the LMDZ model using the STD_ORC, STD_CLM4CN, STD_LPJ setups (Table 1). Data derived solely from the Kettle et al. (2002) surface fluxes are shown by the black solid line. Observations (red crosses) are from the NOAA/ESRL global monitoring network (Montzka et al., 2007).

Launois et al. (2015)

Results: night-time COS fluxes

Fig. 3. Monthly mean observed OCS (F_{OCS} Obs, pmol·m⁻²·s⁻¹; black) and Simple Biosphere (SiB3) model simulated OCS (F_{OCS} SiB, pmol·m⁻²·s⁻¹; red) fluxes for (*A*) daytime (PAR > 600 μ E·m⁻²·s⁻¹) and (*B*) nighttime. (*C*) Mean diel cycle of observed (black) and simulated (red) OCS fluxes and stomatal conductance of OCS, g_s (cm·s⁻¹; green) for August–September 2011.

day-time COS fluxes night-time COS fluxes ratio day-time/night-time

Commane et al. (2015)