
C) First analysis of an ‘Active AirCore’ (Andersen et al., 
2018), collected at a dairy farm in Grijpskerk (NL) on March 
29th, 2019. The drone flight path of evidnetly insected the 
plume of CH4 from dairy farm, a near-coincident plume N2O 
from an active release. No

COS enhancement above 

background levels is 

detected (note: figure 

presents uncalibrated data)

Frontend	design
Home-built frontend: 
- 1x N2 (with built-in Aeronex purifier) 

- 4x high-P samples (cylinders)

- 4x low-P samples (flask, lines)

- 1x AirCore (Karion et al., 2010)

- arbitrary sequencing, programable

- pressure-matching between samples

- instantaneous switching

- line purging for aircore


- line evacuation for flask samples

- PLC-control with intuitive UI

- UI on Aerodyne PC 

- Data sync. with Aerodyne data

- small (50x50x15 cm), 

- easy access

- Simulates AirCore filling

- No need for overblow

- AirCore connections purgeable

- Sample connections evacuable

Introduc/on
Dual-QCL (Aerodyne Research Inc., MA, USA),  
multi-species direct absorption spectrometer: 

– 6 gases: COS, CO2, CO, CH4, N2O, H2O

– low volume cell (150 ml; Veff @50 Torr: 10 ml) 

– 36 m path length (+1.4 m purguable pre-path)

– pressure control is very precise, but very slow

– handling sensitivity: manual calibration iffy

– for AirCore: slow P-control: loss of profile top


Build frontend to alleviate!
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Abstract
We	 developed	 a	 mobile	 analysis	 system	 for	 COS	 around	 a	 dual-QCL	 TILDAS	 featuring	 fast	 response	 at	
acceptable	 precision	 even	 for	 small	 samples.	 The	 system	 allows	 for	 automated	 switching	 between	mul/ple	
samples	 (at	 varying	 pressures),	 with	 exac/ng	 pressure	 matching	 prior	 to	 switching.	 This	 newly	 developed	
instrument	brings	advancements	in	the	ability	to	measure	small-volume	air	samples,	in	a	well-calibrated	and	
easily	repeatable	manner.	Integrated	logging,	semi-automated	reading,	processing	and	calibra/on	workflow	in	
MATLAB	allows	for	rapid	conversion	of	raw	data	into	clibated	output.	We	present	early	applicia/on	results.	

Performance
Typical flask analysis duration (4 samples, 3 standards, 1 target, 3 
repeats): 2.5 hours. Flask sample precision and accuracy:   

CH4: ±0.3, <0.5 ppb / N2O: ±0.05, <0.1 ppb / CO2: ±0.05, <0.1 
ppm / COS: ±6, <15 ppt / CO:   ±0.8, <1.2 ppb

Workflow
- Run sequence of cyl’s (1-5) + samples (a-d):

      e.g., 134a4b4c4a4b4c431

- do curvefits, find asymptotes, get statistics

- interpolate standard in time

- for every sample get cal. coeffs from interp’ed stds 

- calibrate samples to scale of stds. 
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Figure 1. Frontend design

Figure 2. Frontend on QCL during testing and validation

Figure 3. Example of QCL putput, showing concentrations 
of each of 6 measured gases (units: ppb) while stepping 

between 3 working standards (1,3,4) and 3 flask samples 
(a,b,c). Note that the three flask samples were not dry.  

Figure 4. Example of QCL putput, showing concentrations of each of 6 
measured gases (units: ppb) while stepping between 3 working standards (1,3,4) 

and 3 flask samples (a,b,c). Note that the three flask samples were not dry.  

CH4 [ppb] N2O [ppb] CO2 [ppm] COS [ppt] CO [ppb]

Background 1957.2±0.6 332.6±0.1 400.3±0.1 438.9±1.0 115.2±0.4

Biodigester 4696.5±14.6 336.2±0.1 419.0±0.1 505.6±3.5 124.9±1.0

A). Samples collected downwind of a large-scale 
biodigester near village of Veendam, NL show strong 
enhancement of all gas species relative to background (i.e., 
upwind samples). 

First	applica/on	results

B) Kooijmans et al. (2016) present the first measurements of 
COS on flask samples collected at the Lutjewad 
observatory, a coastal site in the Northeast of the 
Netherlands. We intend to extend that timeseries. Some 50 
samples collected at Lutjewad in the period 2017-2019 are 
currently awaiting analysis, and more will be collected on a 
regular basis. Figure 6 (right) presents results of the first 
such measurements overlaid on the seasonal cycle 
presented by Kooijmans et al (2016). 
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TODO: 

- assign more vales to more cylinders (N2O from Lutjewad)

- optimize run duration (terminate early to improve throughput). 

- consider uncertainy of individual samples in calibration (now “all are good”)

- test target gas (e.g., use no assigned values for 3)

- derive confidence interval vs concentration

- characterize non-linearities of COS vs CH4, and compensate (?)

- make code more robust against bistability


Aerodyne QCL 

Dual laser, multi-species direct absorption spectrometer 
– 6 gases: COS, CO2, CO, CH4, N2O, H2O

– low sample flow rate (~50 ml/min)

– low volume cell (~150 ml) (at 50 Torr: 10 ml effective) 

– 36 m path length (+ 1.4 m purguable ambient path)

– pressure control is very precise, but very slow (…)


Possible applications: 
– flasks, cylinders, AirCore, tower samples


But… 
– sensitivity to handling means uncertain calibration

– slow pressure control means loss of top-of-profile 


Build frontend to alleviate!


